144 research outputs found

    Ferroelectric Rashba Semiconductors as a novel class of multifunctional materials

    Get PDF
    The discovery of novel properties, effects or microscopic mechanisms in modern materials science is often driven by the quest for combining, into a single compound, several functionalities: not only the juxtaposition of the latter functionalities, but especially their coupling, can open new horizons in basic condensed matter physics as well as in technology. Semiconductor spintronics makes no exception. In this context, we have discovered by means of density-functional simulations that, when a sizeable spin-orbit coupling is combined with ferroelectricity, such as in GeTe, one obtains novel multifunctional materials - called Ferro-Electric Rashba Semi-Conductors (FERSC) - where, thanks to a giant Rashba spin-splitting, the spin texture is controllable and switchable via an electric field. This peculiar spin-electric coupling can find a natural playground in small-gap insulators, such as chalcogenides, and can bring brand new assets into the field of electrically-controlled semiconductor spintronicsComment: 9 pages, 2 figures, in press on "Frontiers in Condensed Matter Physics

    Interplay between charge-order, ferroelectricity and ferroelasticity: tungsten bronze structures as a playground for multiferroicity

    Full text link
    Large electron-electron Coulomb-interactions in correlated systems can lead to a periodic arrangement of localized electrons, the so called "charge-order". The latter is here proposed as a driving force behind ferroelectricity in iron fluoride K0.6FeF3. By means of density functional theory, we propose different non-centrosymmetric d5/d6 charge-ordering patterns, each giving rise to polarization along different crystallographic axes and with different magnitudes. Accordingly, we introduce the concept of "ferroelectric anistropy" (peculiar to improper ferroelectrics with polarization induced by electronic degrees of freedom), denoting the small energy difference between competing charge-ordered states that might be stabilized upon electrical field-cooling. Moreover, we suggest a novel type of charge-order-induced ferroelasticity: first-principles simulations predict a monoclinic distortion to be driven by a specific charge-ordering pattern, which, in turn, unambiguously determines the direction of ferroelectric polarization. K0.6FeF3 therefore emerges as a prototypical compound, in which the intimately coupled electronic and structural degrees of freedom result in a manifest and peculiar multiferroicity.Comment: 4 pages, 4 figures, Submitted for publicatio

    Mechanisms and origin of multiferroicity

    Get PDF
    Motivated by the potential applications of their intrinsic cross-coupling properties, the interest in multiferroic materials has constantly increased recently, leading to significant experimental and theoretical advancements. From the theoretical point of view, recent progresses have allowed to identify different mechanisms responsible for the appearence of ferroelectric polarization coexisting with -- and coupled to -- magnetic properties. This chapter aims at reviewing the fundamental mechanisms devised so far, mainly in transition-metal oxides, which lie at the origin of multiferroicity

    Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer

    Full text link
    Topological spin structures, such as magnetic skyrmions, hold great promises for data storage applications, thanks to their inherent stability. In most cases, skyrmions are stabilized by magnetic fields in non-centrosymmetric systems displaying the chiral Dzyaloshinskii-Moriya exchange interaction, while spontaneous skyrmion lattices have been reported in centrosymmetric itinerant magnets with long-range interactions. Here, a spontaneous anti-biskyrmion lattice with unique topology and chirality is predicted in the monolayer of a semiconducting and centrosymmetric metal halide, NiI2_2. Our first-principles and Monte Carlo simulations reveal that the anisotropies of the short-range symmetric exchange, when combined with magnetic frustration, can lead to an emergent chiral interaction that is responsible for the predicted topological spin structures. The proposed mechanism finds a prototypical manifestation in two-dimensional magnets, thus broadening the class of materials that can host spontaneous skyrmionic states.Comment: submitte

    Interface effects at a half-metal/ferroelectric junction

    Full text link
    Magnetoelectric effects are investigated ab-initio at the interface between half-metallic and ferroelectric prototypes: Heusler Co2_2MnSi and perovskite BaTiO3_3. For the Co-termination ferroelectricity develops in BaTiO3_3 down to nanometer thicknesses, whereas for the MnSi-termination a paraelectric and a ferroelectric state energetically compete, calling for a full experimental control over the junction atomic configuration whenever a ferroelectric barrier is needed. Switch of the electric polarization largely affects magnetism in Co2_2MnSi, with magnetoelectric coupling due to electronic hybridization at the MnSi termination and to structural effects at the Co-termination. Half-metallicity is lost at the interface, but recovered already in the subsurface layer.Comment: 4 pages, 3figures, accepted for publication in Appl. Phys. Let

    Magnetically induced ferroelectricity in Cu2MnSnS4 and Cu2MnSnSe4

    Full text link
    We investigate magnetically-induced ferroelectricity in Cu2MnSnS4 by means of Landau theory of phase transitions and of ab initio density functional theory. As expected from the Landau approach, ab initio calculations show that a non-zero ferroelectric polarization P along the y direction is induced by the peculiar antiferromagnetic configuration of Mn spins occurring in Cu2MnSnS4. The comparison between P, calculated either via density-functional-theory or according to Landau approach, clearly shows that ferroelectricity is mainly driven by Heisenberg-exchange terms and only to a minor extent by relativistic terms. At variance with previous examples of collinear antiferromagnets with magnetically-induced ferroelectricity (such as AFM-E HoMnO3), the ionic displacements occurring upon magnetic ordering are very small, so that the exchange-striction mechanism (i.e. displacement of ions so as to minimize the magnetic coupling energy) is not effective here. Rather, the microscopic mechanism at the basis of polarization has mostly an electronic origin. In this framework, we propose the small magnetic moment at Cu sites induced by neighboring Mn magnetic moments to play a relevant role in inducing P. Finally, we investigate the effect of the anion by comparing Cu2MnSnSe4 and Cu2MnSnS4: Se-4p states, more delocalized compared to S-3p states, are able to better mediate the Mn-Mn interaction, in turn leading to a higher ferroelectric polarization in the Se-based compound

    Ferroelectricity due to orbital ordering in E-type undoped rare-earth manganites

    Full text link
    Aiming at understanding the origin of the electronic contribution to ferroelectric polarization in undoped manganites, we evaluate the Berry phase of orbital-polarizable Bloch electrons as an orbital ordering (OO) establishes in the background of an antiferromagnetic E-type configuration. The onset of OO is tuned by the Jahn-Teller (JT) interaction in a tight-binding model for interacting electrons moving along zigzag chains. A finite polarization is found as soon as the JT coupling is strong enough to induce OO, supporting the large electronic contribution predicted from first principles.Comment: 4 pages, 2 figures, figure and text substantially improved. Title change
    • …
    corecore